Get insider access
Preferred store
Your browser is not supported or outdated so some features of the site might not be available.
We've recently released Test Bench 2.0 for Monitors! Read our new VRR Flicker R&D Article and Pursuit Photo R&D Article to learn more.

HDMI vs DisplayPort
Which one should you use?

Updated

HDMI Cable

HDMI and DisplayPort are two of the most common media interfaces that you can use to transfer audio and video signals to your display. While most multimedia devices like TVs and Blu-ray players only have HDMI inputs, computers and monitors tend to have both DisplayPort and HDMI inputs, so it begs the question: which one should you use with your monitor? Let's compare some of the differences between the two media interfaces to help you make that decision.

 Physical Differences

HDMI CableHDMI Connector
DisplayPort CableDisplayPort Connector

HDMI and DisplayPort connections are physically very similar. HDMI uses a 19-pin cable, while DisplayPort has 20 pins. Both connectors look alike, but most DisplayPort cables have a physical latch that prevents them from being disconnected accidentally, even if it isn't part of the DisplayPort standard. On the other hand, very few HDMI cables have latches.

While the most common inputs and cables have the standard HDMI and DisplayPort connector types, Mini HDMI, Micro HDMI, and Mini DisplayPort connectors also exist. They're smaller but still support the same media formats and bandwidth. Only a handful of monitors have these connections, as most have the standard HDMI and DisplayPort inputs.

Maximum Length

HDMI

  • No official maximum length
  • Suggested up to around 40-50 feet (13-15 m)
  • Optimal performance at 6 feet (2 m) or less

DisplayPort

  • The official maximum length is 10 feet (3 m)
  • Many cables are short for optimal performance

Although there's no maximum cable length for officially certified HDMI cables, longer cables have a greater chance of introducing issues, like dropped signals. Because of this, for a cable to receive HDMI certification, it needs to properly work at whichever length it's available. Of course, plenty of HDMI cables out there don't have official certification, so it can be easy for manufacturers to make longer cables and claim they work, but buying one of these poses a risk that they won't work.

The same issues occur with long DisplayPort cables. Because of this, DisplayPort has set a maximum length of 10 feet, but most cables are shorter than that. Like with HDMI cables, you can easily find longer ones, but they aren't officially certified and may not work.

Versions & Bandwidth

Both HDMI and DisplayPort have released different versions throughout the years with various bandwidth limitations and supported formats. Even after releasing a new version, both DisplayPort and HDMI have released slight revisions, so sometimes you may see HDMI 2.0 called HDMI 2.0a, for example. Below, you can see some of the features of more recent HDMI and DisplayPort versions. There are older versions, like HDMI 1.0 through 1.3 and DisplayPort 1.0/1.1, but these aren't common on monitors.

  HDMI 1.4 HDMI 2.0 HDMI 2.1 DP 1.2 DP 1.4 DP 2.1
Alternative Names HDMI 1.4a
HDMI 1.4b
HDMI 2.0a
HDMI 2.0b
HDMI 2.1a
HDMI 2.1b
DP 1.2a DP 1.4a DP 2.0
DP 2.1a
Release Year 2009 2013 2017 2010  2016 2019
Max Bandwidth 10.2 Gbps 18.0 Gbps 48 Gbps 21.6 Gbps  32.4 Gbps  80.0 Gbps
Compression No No Yes No Yes Yes
HDR No Yes Yes Yes Yes Yes

Supported Resolutions

The maximum resolution and refresh rate available depend on the specific versions of DisplayPort and HDMI on both your monitor and your source. This means you can have an HDMI 2.1 monitor, but if your graphics card only supports HDMI 2.0 bandwidth, your signal is limited to HDMI 2.0 bandwidth. Conversely, if you're using an HDMI 2.0 monitor with an HDMI 2.1 source, the bandwidth is still limited to HDMI 2.0 bandwidth. Essentially, the max resolution and refresh rate depend on the lowest bandwidth available from both your source and monitor.

Below you can see the max refresh rate with common resolutions using uncompressed 8-bit and 10-bit signals with chroma 4:4:4. You can use Display Stream Compression (DSC) to reach higher refresh rates as long as your graphics card supports it, which most do. Although using DSC doesn't result in a noticeable loss in image quality, it can still cause some issues if not implemented properly.

Uncompressed
Resolution
HDMI 1.4 HDMI 2.0 HDMI 2.1 DP 1.2 DP 1.4 DP 2.1
1920x1080
8-bit
147Hz 246Hz 589Hz 289Hz 406Hz 885Hz
1920x1080
10-bit
120Hz 202Hz 499Hz 238Hz 338Hz 771Hz
2560x1440
8-bit
86Hz 147Hz 379Hz 174Hz 251Hz 610Hz
2560x1440
10-bit
69Hz 119Hz 314Hz 142Hz 206Hz 517Hz
3440x1440
8-bit
65Hz 112Hz 297Hz 133Hz 194Hz 492Hz
 3440x1440
10-bit
52Hz 91Hz 245Hz 108Hz 158Hz 412Hz
3840x2160
8-bit
39Hz 69Hz 188Hz 82Hz 120Hz 324Hz
 3840x2160
10-bit
32Hz 55Hz 153Hz 66Hz 97Hz 267Hz

Although this table helps you understand the maximum possible refresh rate with each signal, it doesn't mean your monitor will reach that refresh rate. Often, the max refresh rate is a common refresh rate below the max, like 60Hz, 120Hz, 144Hz, etc., as reaching other refresh rates like 206Hz is uncommon and requires a custom resolution.

We also measure the max refresh rate of each monitor we test with 8-bit and 10-bit signals, so it's best to check reviews if this concerns you when looking for a new monitor. Below is a table of the max refresh rate that we commonly see on monitors at various resolutions, and this includes signals that use DSC, as you can still use the monitor at a higher refresh rate than the theoretical max for a certain resolution.

Resolution HDMI 1.4 HDMI 2.0 HDMI 2.1 DP 1.2 DP 1.4
1920x1080
8-bit
144Hz 240Hz 540Hz 280Hz 540Hz
1920x1080
10-bit
120Hz 144Hz 500Hz 240Hz 540Hz
2560x1440
8-bit
75Hz 144Hz 360Hz 170Hz 360Hz
2560x1440
10-bit
60Hz 75Hz 360Hz 120Hz 360Hz 
3440x1440
8-bit
60Hz 100Hz 240Hz 100Hz 240Hz
3440x1440
10-bit
50Hz 60Hz 240Hz 100Hz 240Hz 
3840x2160
8-bit
30Hz 60Hz 240Hz 60Hz 240Hz
3840x210
10-bit
30Hz 30Hz 240Hz 60Hz 240Hz

Learn more about HDMI 2.1

Key Features And Differences

Each interface supports a few features, so choosing to use one over the other can also depend on which features you want to use. Below are some examples.

Multi-Stream Transport (MST)

First introduced with DisplayPort 1.2, Multi-Stream Transport, or MST, allows you to connect multiple displays amongst each other in a chain to a single DisplayPort connection on your computer. This is also called daisy chaining. Although the total bandwidth can't exceed the maximum bandwidth of the port you're using, in theory, this technology allows you to run up to 63 separate displays on a single port. Monitors with a daisy chaining port can support DisplayPort out to connect a second display, or you have to use an external hub.

HDMI doesn't natively support MST, but it's possible to achieve similar results using DisplayPort to HDMI hubs. This still requires a DisplayPort connection on the source device.

Variable Refresh Rate (VRR)

Most modern monitors and graphics cards support VRR to reduce screen tearing, which works over HDMI and DisplayPort. The main difference between these two connections is that for most monitors, G-SYNC VRR only works over DisplayPort. Some monitors do support G-SYNC over HDMI, but they either need to support HDMI 2.1 bandwidth, which in turn means they support HDMI Forum VRR, or they have native G-SYNC support instead of G-SYNC compatibility.

If you have an NVIDIA graphics card and want to use VRR, it's best to use a DisplayPort connection unless you know your monitor supports it over HDMI.

Learn more about the difference between FreeSync and G-SYNC

USB-C DisplayPort Alt Mode

Not every device has HDMI or DisplayPort ports, but they can still support video and audio signals. The most common way of achieving this is using DisplayPort Alt Mode over USB-C. As the name suggests, DisplayPort Alt Mode is a type of DisplayPort media interface, so it supports many of the same features and bandwidth. Devices with USB-C ports, like laptops (including MacBooks and Chromebooks), phones, and even the Nintendo Switch, support DisplayPort Alt Mode, so they can send a video signal to a monitor that supports it, too.

There are a few advantages to using DisplayPort Alt Mode. Many monitors provide power over USB-C, so you can charge your laptop while using it. The USB-C port also serves as a USB upstream port, so you can connect your devices directly to other USB ports on the monitor and use them with your computer.

Learn more about different USB ports on your monitor

eARC/ARC

One of the most popular features that HDMI has, which DisplayPort doesn't, is eARC/ARC support. This allows you to connect a compatible soundbar over HDMI and passthrough common audio formats from an external source to the soundbar. For example, you can connect your Blu-ray to the display and have a soundbar play high-quality audio signals, like Dolby Atmos or DTS:X. However, this feature is very uncommon on monitors and is more common on TVs, so if you have a monitor, it's best to connect your soundbar directly to your multimedia device.

Learn more about eARC & ARC passthrough

Graphics Cards

As mentioned earlier, your device and monitor need to support the same max bandwidth to take full advantage of each other. Many modern graphics cards support at least HDMI 2.1 bandwidth, which NVIDIA GeForce RTX 30 Series and AMD Radeon RX 6000 Series and newer graphics cards support. Graphics cards are coming out with DisplayPort 2.1 as well, like the AMD Radeon RX 7000 Series cards, but this is still in its infancy on monitors.

Performance

Besides the different max refresh rates and resolutions each connection type supports, there really isn't much difference between using the two. The picture quality is the same, and more importantly, the response time and input lag are the same no matter which connection you use. This means that if both connections result in the same max refresh rate, there's no difference in choosing one over the other.

Compatibility

Lastly, HDMI has an advantage over DisplayPort when it comes to compatibility and availability with devices. Most common devices, from Blu-ray players to soundbars, have HDMI ports, while DisplayPort is mainly available with computers and monitors. While this doesn't make a difference if you have a computer and want to connect your monitor, it is something to consider if you want to connect other devices, like gaming consoles. That said, most monitors have HDMI ports as well.

  HDMI DisplayPort
TVs Yes No
Projectors Yes No
Monitors Yes Yes
Computers Yes Yes
PS5 & Xbox Series X|S Yes No
Blu-ray Players Yes No
Soundbars & Receivers Yes No
Streaming Devices Yes No
Cable Boxes Yes No

Conclusion

DisplayPort and HDMI cables deliver very similar performance, but they each have advantages and disadvantages. HDMI is supported on more devices, but DisplayPort, which was designed for computers, has a few technical advantages. Overall, if you're looking to connect your computer to a new monitor, choosing which connection type to use depends on your device, like your computer's graphics card, as you'll want something that takes full advantage of your monitor's capabilities. There aren't any differences in performance between the connection types, like picture quality, response time, or input lag, so knowing which one to choose really depends on the maximum refresh rate you can achieve with each of them.